Search results for "degrees of freedom"
showing 10 items of 204 documents
Revealing Charge-Transfer Dynamics at Electrified Sulfur Cathodes Using Constrained Density Functional Theory
2021
To understand and control the behavior of electrochemical systems, including batteries and electrocatalysts, we seek molecular-level details of the charge transfer mechanisms at electrified interfaces. Recognizing some key limitations of standard equilibrium electronic structure methods to model materials and their interfaces, we propose applying charge constraints to effectively separate electronic and nuclear degrees of freedom, which are especially beneficial to the study of conversion electrodes, where electronic charge carriers are converted to much slower polarons within a material that is nonmetallic. We demonstrate the need for such an approach within the context of sulfur cathodes …
Metric-affine f(R,T) theories of gravity and their applications
2018
We study $f(R,T)$ theories of gravity, where $T$ is the trace of the energy-momentum tensor ${T}_{\ensuremath{\mu}\ensuremath{\nu}}$, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine $f(R)$ relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservatio…
Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves
2018
We explore gravitational wave signals arising from first-order phase transitions occurring in a secluded hidden sector, allowing for the possibility that the hidden sector may have a different temperature than the Standard Model sector. We present the sensitivity to such scenarios for both current and future gravitational wave detectors in a model-independent fashion. Since secluded hidden sectors are of particular interest for dark matter models at the MeV scale or below, we pay special attention to the reach of pulsar timing arrays. Cosmological constraints on light degrees of freedom restrict the number of sub-MeV particles in a hidden sector, as well as the hidden sector temperature. Ne…
Low-temperature specific heat of orientational glasses
1992
This review summarizes specific heat data measured at low temperatures (T<1 K) on orientational glasses. Three species of mixed molecular crystals exhibiting orientational disorder are considered, namely (KBr)1−x (KCN) x , (NaCN)1−x (KCN) x (Rb)1−x (NH4) x H2PO4. For intermediate concentrations of the anisotropic components, glass-like excitations have been observed. It is demonstrated that with respect to thermal properties, orientational disorder leads to the same “universal” behaviours than for structural disorder, i.e. a specific heat which varies below 1 K and for times 10−4 s–10 s as:C p(T,t)∞T 1×ln(t). The variation of the glass-like anomaly with compositional disorder is also discus…
A quantum dynamics study of the benzopyran ring opening guided by laser pulses
2014
Abstract The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of str…
Single Particle Levels and ββ-Decay Matrix Elements in The Interacting Boson Model
2018
Recently a new method to calculate the occupancies of single particle levels in atomic nuclei was developed in the context of the microscopic interacting boson model, in which neutron and proton degrees of freedom are treated explicitly (IBM-2). The energies of the single particle levels constitute a very important input for the calculation of the occupancies in this method, and further they play important role in the calculation of double beta decay nuclear matrix elements. Here we discuss how the 0νββ, 0νhββ, and 2νββ-decay nuclear matrix elements (NMEs) are affected when the energies of single particle levels are changed. peerReviewed
Strongly confined fluids: Diverging time scales and slowing down of equilibration
2016
The Newtonian dynamics of strongly confined fluids exhibits a rich behavior. Its confined and unconfined degrees of freedom decouple for confinement length $L \to 0$. In that case and for a slit geometry the intermediate scattering functions $S_{\mu\nu}(q,t)$ simplify, resulting for $(\mu,\nu) \neq (0,0)$ in a Knudsen-gas like behavior of the confined degrees of freedom, and otherwise in $S_{\parallel}(q,t)$, describing the structural relaxation of the unconfined ones. Taking the coupling into account we prove that the energy fluctuations relax exponentially. For smooth potentials the relaxation times diverge as $L^{-3}$ and $L^{-4}$, respectively, for the confined and unconfined degrees of…
Stability and Chaos
2010
In this chapter we study a larger class of dynamical systems that include but go beyond Hamiltonian systems. We are interested, on the one hand, in dissipative systems, i.e. systems that lose energy through frictional forces or into which energy is fed from exterior sources, and, on the other hand, in discrete, or discretized, systems such as those generated by studying flows by means of the Poincare mapping. The occurence of dissipation implies that the system is coupled to other, external systems, in a controllable manner. The strength of such couplings appears in the set of solutions, usually in the form of parameters. If these parameters are varied it may happen that the flow undergoes …
Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths
2018
Many open quantum systems encountered in both natural and synthetic situations are embedded in classical-like baths. Often, the bath degrees of freedom may be represented in terms of canonically conjugate coordinates, but in some cases they may require a non-canonical or non-Hamiltonian representation. Herein, we review an approach to the dynamics and statistical mechanics of quantum subsystems embedded in either non-canonical or non-Hamiltonian classical-like baths which is based on operator-valued quasi-probability functions. These functions typically evolve through the action of quasi-Lie brackets and their associated Quantum-Classical Liouville Equations, or through quasi-Lie brackets a…
Guinean and sahelian rainfall anomaly indices at annual and monthly scales (1933-1990)
1994
The annual and monthly rainfall variability in north tropical Africa are analysed by principal component analysis in order to detect the main coherent modes. The Sahel constitutes the first mode, although it is divided close to 1O"W into an Atlantic section and a Continental section. The Guinean zone is less coherent, and is divided into distinct modes. The subequatorial area never formed a distinct mode. Rainfall variability for the coherent areas is constructed from rainfall anomaly indices (RAI), based on the coherent areas, and a rainfall typology taking into account the spatial pattern of the rainfall anomaly fields and the intensity of the anomaly. Their evolution (mainly since 1950) …